Sewershed Delineation and WinSLAMM Modeling

Stormwater Coalition of Albany County January 25, 2018

1

This is the Ann Lee Subwatershed with 2017 aerial imagery. The outlet of the watershed is marked with a green star. The border of the Village of Colonie is displayed in the purple outline. The rest of the subwatershed is in the Town of Colonie. This subwatershed was delineated by the Stormwater Coalition using USGS StreamStats

This is a digital elevation model (DEM). A DEM is a collection of raster pixels (explained on next slide) and each pixel has an elevation associated with it. In this particular DEM, each pixel represents a 3 foot by 3 foot area on the ground. The DEM is only shown for the area in and around the Ann Lee Subwatershed, but the Coalition has a DEM for all of Albany County. It is important to note that this DEM has been preprocessed using the "Fill" function. This tool corrects errors in the DEM, and will also help prevent "sinks" or pixels that would have no direction from them since they are the lowest relative elevation compared to the adjacent cells. This DEM was made using LiDAR data, the Stormwater Coalition and Albany County funded the collection of this data through a Department of Homeland Security grant

This graphic shows the differences between "Vector" and "Raster" data formats. These are the two ways that data can be represented in GIS. Vector data consists of points, lines, or polygons and are useful for storing and displaying data that have discrete boundaries, such as county borders. Raster data, the data format of the DEM, is comprised of "pixels" of a given, uniform size on the ground (in our DEM each pixel is 3 feet by 3 feet) and each pixel is assigned a value representing some attribute, so in the case of the DEM, each pixel has the elevation of that area associated with it.

These graphics represent the "Flow Direction" and subsequent "Flow Accumulation" that are derived from our DEM. Using the "Flow Direction" tool, the GIS software finds the direction that water would flow based on the relative elevation of a cell compared to adjacent cells. Flow can move in 8 directions (through any of the 4 sides of the pixel, or any of the 4 corners), and the direction of flow will be toward an adjacent cell with the lowest elevation. Once "Flow Direction" is derived, "Flow Accumulation" can then be found by running the "Flow Accumulation" tool. If no unique value is specified then each pixel is assigned a default value of "1". A cell with a "Flow Accumulation" value of "2" means that this cell has 2 other cells flowing into it. In the above matrix the highest cell value is "35", meaning that 35 of the 36 cells are flowing into this cell, if this matrix represents a watershed, this cell would be the watershed outlet. It's important to note that "Flow Accumulation" is really the relative flow accumulation based on the direction of flow. The flow direction and flow accumulation in the Ann Lee watershed are displayed on the following 2 slides.

These are maps of flow direction for the Ann Lee Subwatershed. The map on the left has flow direction displayed as a raster format, and the map on the right is the generalized flow direction displayed as vector arrows, with each arrow representing the average flow direction for 35 pixels. Flow direction was processed for an area larger than the watershed boundary to include storm infrastructure connected within the Ann Lee Subwatershed.

From the flow direction, the relative flow accumulation is pictured above. Pixels in white have relatively high flow accumulation.

Based on System Mapping, this is the whole MS4 system for the Town of Colonie with an emphasis on the infrastructure within the Ann Lee Subwatershed. The most important infrastructure are "Catch Basins", "Main Lines" and "Outfalls", PCSMPs can be added later for subsequent "WinSLAMM" modeling. The black box in the northwestern part of the watershed is the isolated system that will be focused on in the following slides. The Town of Colonie data has not yet been finalized, but was provided by Rob Mateja, the town's GIS Coordinator, on 1/9/2018. The Albany County dataset has also not yet been finalized

This is one part of the Town of Colonie system. In order to delineate the Sewershed, one must find an outfall, determine what pipes, catch basins, and other infrastructure are connected to that outfall and select these features and assess it as an isolated system. This is an example of this isolated infrastructure from the northwestern Ann Lee Subwatershed.

int Snap Pour Point		- 0 ×	
Input raster or feature p	our point data		
CatchBasin		- 🖻	
Pour point field (optional	0		
OBJECTID		~	
Input accumulation raste	r		
flowacc		- 2	
Output raster			
C:\Users\tflagler\Deskt	op\Examples\Example.gdb\snapCB	2	
Snap distance			
		6	
		~	
	OK Cancel	Environments Show Help >>	
			10

Now that the flow direction and flow accumulation have been found, and we have selected out the infrastructure connected to one outfall, we can begin delineating the source areas contributing water to the system ending at our selected outfall. The delineation is based on the topographic area contributing water to the catch basins in the system. The first step, shown here, is to "Snap Pour Point". In this case the "pour points" are the catch basins in the system, therefore we input these as our "feature pour point data", we also input the derived flow accumulation, and use a "Snap Distance" of 6, in this case our map units are feet, so our snap distance is 6 feet. With these inputs, the software searches a 6 foot radius around each catch basin to find the point of greatest flow accumulation. The purpose of this step is to account for any offset in the location where the catch basins were mapped and where they actually are, and also to mitigate assumptions in deriving flow accumulation from a DEM. By snapping to a pour point, our "outlet" of the small "watersheds" around each catch basin will be generalized to the highest flow accumulation to provide the best representation of source areas contributing to the catch basin. The value of a 6 foot snap distance was determined by FSI, now VHB, when delineating storm sewersheds for the Coalition in 2013. This distance had the best accuracy and therefore this value has been kept consistent.

This is the result of the "Snap Pour Point" tool. The yellow and red squares represent the area within a 6 foot radius around the respective catch basins that have the highest flow accumulation. Take note of the offset, and also note that the offset is not always this dramatic.

Watershed	– 🗆 X	
Input flow direction raster	^	
flowdir	- 🖻	
Input raster or feature pour point data		
snapCB	- 🖻	
Pour point field (optional)		
Value	~	
Output raster		
C: \Users \iflagler \Desktop \Examples \Example.gdb \cbshed		
	~	
OK Cancel E	invironments Show Help >>	12
		12

Once we've snapped to pour points, we want to delineate the watersheds around each catch basin (now snapped, so instead of inputting our "CatchBasins" as the "feature pour point data" we actually input the "snapCB", which is the result of the "Snap Pour Point" tool). We also input the flow direction derived from the DEM, and this will delineate the source area around each catch basin

This is the result of the "Watershed" tool. The output is a raster format, and the different colored areas represent the source area pouring into a given catch basin

Naster to Polygon					
Input raster			^		
cbshed			- 🖻		
Field (optional)					
Value			~		
Output polygon features					
C: \Users\iflagler \Desktop \Examples	shedpoly.shp		2		
C sules i kokina (denara)					
			~		
	OK Cancel	Environments Si	now Help >>	14	

For representational purposes and for simplicity working with GIS data we now want to convert our output raster watersheds to a polygon layer using the "Raster to Polygon". We input the watershed raster and let the program convert the data.

This is the result of the "Polygon to Raster" tool. Notice the lines separating the sewershed. These are still the individual source areas contributing to each catch basin. However, we want one shape to have a good representation of the aggregated sewershed, this also makes is easier to manipulate the sewershed.

Input Features		^	
CB Watershed Polygon		- 🖻	
Output Feature Class			
C:\Users\iflagler\Desktop\	xamples\Sewershed.shp	2	
Dissolve_Field(s) (optional)		and the second se	
Select Al Uno	lect All	Add Field	
Select All Uns Statistics Field(s) (potional)	fect All	Add Field	
Select All Uns Statistics Field(s) (optional)	Ject All	Add Field	
Select All Uns Statistics Field(s) (optional) Field	fect All	Add Field	
Select All Uns Statistics Field(s) (optional) Field	Hect All Statistic Type	Add Field	
Select All Uns Statistics Field(s) (optional) Field	elect All Statistic Type	Add Field	
Select All Uns Statistics Field(s) (optional) Field	elect All Statistic Type	Add Field	
Select All Uns Statistics Field(s) (optional) Field	elect All Statistic Type	Add Field	
Select All Uns Statistics Field(s) (optional) Field	fect All Statistic Type	Add Field	

Since we want one shape, we use the "Dissolve" tool, this takes the smaller watersheds for each catch basin and aggregates is into one shape, which is our final "Sewershed"

Here is our 16.5 acre sewershed in the Ann Lee Subwatershed. The areas in purple is the entire area that will spill into the catch basins contributing to the identified outfall.

This is a screenshot of the model used to execute this process. As noted, one must go through the area of interest (in this case the Ann Lee subwatershed), select the catch basins contributing to a single outfall, and group those together. The grouped catch basins are labeled using the outfall ID for the outfall they are connected to. In the list above we see the groups of catch basins contributing to the respective outfalls for Town of Colonie outfalls within the Ann Lee Subwatershed. These catch basins are stored in a geodatabase labeled "Tcol.gdb" and this is shown as the blue oval in the model (blue ovals are input features, yellow rectangles are tools, green ovals are outputs of processes, and as will be discussed, the orange figure is an "iterator"). The grouped catch basin feature classes and the flow accumulation "flowacc" (blue oval) are input into the yellow rectangle labeled "Snap Pour Point". The green oval "snapCB" is the output of this tool, and this, along with flow direction ("flowdir" in the blue oval) serve as the inputs in the yellow rectangle labeled "Watershed". The output of this process is in the green oval labeled "cbshed" and is the raster of the small watersheds around each catch basin. This is then used as the input for the "Raster to Polygon" (yellow rectangle) and the output "cbpoly.shp" (green oval) is the small watersheds converted to a shapefile (vector format). This shape is then input into the "Dissolve" tool (yellow rectangle), and the output is our final sewershed, labeled as "%Name%.shp". This label is between "%" because this tells the program that the name of this final output will be the same as the name of the input, meaning each sewershed receives the name of the outfall ID that it is a sewershed for. Once this process is complete,

we go back to the beginning with the orange figure labeled "Iterate Feature Classes". This iterator makes it so that once the model processes are completed and the sewershed is delineated, the model, and all processes, will repeat on the next group of catch basins for the next outfall. So, once the catch basins are selected and grouped the model can automatically run on many sets of catch basins.

This is an example of a sewershed, derived from the same process, but is in the eastern portion of the Ann Lee Subwatersehd. The reason that this image is included is to show that there might not be a large, "neat", source area contributing to an outfall based on the topography in the DEM, whether or not this is the case .in the reality would need to be field verified

Now that the sewersheds are delineated we can model the system using WinSLAMM (Source Loading and Management Model for Windows) by PV associates. This mathematical model allows us to calculate pollutant concentrations, flow to the outfall, sediment delivery, and simulate various PCSMPs using stormwater infrastructure information

When discussing modeling we need to start with these caveats. Models are important representations that assist users in understanding processes at a landscape scale, but these are not definitive, and models cannot account for things like illicit discharges. Models cannot determine that someone is dumping oil in a catch basin, but can describe what happens if the land area is mostly parking lots, driveways, etc.

This is our original sewershed, delineated in the white line, take note of the aerial imagery and the land use that we see in the watershed. This land use is classified as "Suburban Residential"

This is a visual representation of the model. The purple box labeled "Suburban Residential" is the land use area, this is connected to our Catch Basins, where stormwater then enters the pipes ("DS Pipe #1), and makes its way to the outfall. The inputs will be elaborated on in subsequent slides.

These are the input data files for the WinSLAMM model. They include precipitation (we have data until 2005), pollutant probability, runoff coefficient, particulate solids, 6 different files for source areas, and peak to average flow ratios. These inputs have been calculated based on studies done by the USGS, and by members of PV Associates, and they are calculated for the northeast generally, and precipitation data comes from Albany Airport.

This is the WinSLAMM flowchart of the various source areas and land uses, which contribute to the drainage system, and ultimately result in the outputs at the outfall

and Use Types Available:	Source Area Name Area (ac
High Rise Residential - HRR High Density Res. with Alleys - HDRWA High Density Res. No Alleys - HDRWA Mobile Homes - MOBH Deplex - DUPLEX Medium Density Res. No Alleys - MDRWA	Disconnected Pitched Roofs 2.60 Disconnected Paved Parking 0.10 Directly Connected Driveways 1.60 Disconnected Driveways 1.20 Disconnected Sidewalks 0.10 Street Areas 1 0.70 Street Areas 2 3.30 Street Lorder 86 80
Multi Family Residental - MFR Low Density Residental - LDR Suburban Residental - SUBR	Undeveloped Areas 5.50 Isolated Areas 0.10
Multi Family Residential - MFR Low Density Residential - LDR Solution Residential - SUBR Selected Land Use Type: Suburban Residential - SUBR	Undeveloped Areas 5.50 Isolated Areas 0.10 Total Area: 100.000
Multi Family Residential - MFR Low Density Residential - LDR Solution Residential - SUBR Selected Land Use Type: Suburban Residential - SUBR Area of Land Use with Sandy Soils (ac): 16.5 Area of Land Use with Sity Soils (ac): 16.5 Area of Land Use with Sity Soils (ac): 16.5	Total Area: 100,000 Create Land Use and Exit

These are the generalized land use types with source areas (roofs, parking, undeveloped areas, etc.) attributes described. And the soil texture taken from the SSRGO database. In this sewershed the entire 16.5 acres are on sandy soils.

This is an example of digitization that can be done to focus on describing the area and attributes of the source areas within the sewershed. In most cases the generalized parameters and source area size will be "good enough", as this method of digitization is time consuming and inefficient

CP Index 8	8 : 1						
1. Fracti catch	on of drainage area served by basins (0 - 1):	1.000	7. 8.	Typical outlet pi Typical catchba	pe slope (ft/ft): sin sump surface	0.020	
C 2a. Ca	atchbasin density (cb/ac):			Catchbasin Depi	th from Sump Bottom		
@ 2b. N	umber of Catchbasins:	20	3.	to street level if	dt .	5.5	
3 Avera	as sump depth below	1.50	10.	Flow Ratio	oh Peak to Average	3.8	
catch	basin outlet invert (ft):	1 1.50	11.	Leakage rate th	rough sump	0.00	
4. Depth	of sediment in catchbasin sump	0.50		bottom (in/hr)		1	
at beg	pinning of study period (it):	1	12.	Select Critica	Particle Size file name	ie.	
E Tunia	at author size diameter (it)	1.25			and the construction of the second		
5. Typic: 6. Typical Catchba: Densities	al outlet pipe diameter (It): al outlet pipe Manning's n: C Low density residentia sin Medium density residentia ; High density residentia	1.25 0.013 0 (0.25 inle ntial (0.5 i al (1 inlet/	ets/ac inlets/ acre)	Noi needed - calcu re) C Shoj acre) C Indu	lated by program oping center (1.2 inlet stry (0.8 inlets/acre) ways (1 inlet/acre)	s/acre)	
5. Typic 6. Typic Typical Catchba Densitien	al outlet pipe diameter (II) al outlet pipe Manning's n: C Low density residentia sin C Medium density residentia C High density residentia C Staje commercial (1.2 i Calchbasin Cleaning Dates	1.25 0.013 0 (0.25 inlendial (0.5 in	ets/ac inlets/ acre) el	Not needed - calcu re) C Shoj c Indu C Free	ilated by program opping center (1.2 inlet stry (0.8 inlets/acre) ways (1 inlet/acre) in Cleaning Frequenc	s/acre)	
5. Typic 6. Typic Typical Catchba Densilier	al outlet pipe diameter (II) al outlet pipe Manning's n: C Low density residentia in C Medium density residentia C High density residentia C Steip commercial (1.2 i Catchbasin Cleaning Dates Catchbasin Catchbasin Catchbasin Catchbasin Catchbasin Catchbasin	1.25 0.013 0.25 ink ntial (0.5 i al (1 inket/ inket/acre Sele	ets/ac inlets/ acre) el e ct	Not needed - calct re) C Shoj c Indu C Free C Atchbas C Mon C The C Sem	Anted by program oping center [1.2 inlet stry (0.8 inlets/acce) ways [1 inlet/acce] in Cleaning Frequence thy e Times per Year is Annually	s/acie)	
5. Typic 6. Typical Catchba Densitier	al outlet pipe diameter (II): al outlet pipe Manning's n: C Low density residentia in Medium density residentia High density residentia Strip commercial (1.2 i Catchbasin Cleaning Date (mm/dd/yy) 1	1.25 0.013 1 (0.25 inle initial (0.5 ial (1 initet/ initets/acre Sele OP Press 'F1'	ets/ac inlets/ acre) e) eCt	Not needed - calct re) C Shoj acce) C Indu C Free C Catchbas C Mon C Thre C Anny	And by program oping center [1.2 inlet stry (0.8 inlets/acce) ways [1 inlet/acce] in Cleaning Frequenc thy e Times per Year Annually sally	s/acie)	
5. Typic 6. Typical Catchba: Densitier	al outlet pipe diameter (ft): al outlet pipe Manning's n: C Low density residentia Medium density residentia High density residentia Strip commercial (1.2 i Celchbasin Cleaning Dates Catchbasin Cleaning No. Dearing Date (nm/dd/yy) 1 2	1.25 0.013 1 (0.25 inkinitial (0.5 al (1 intet/ intets/acro Sele OP Press 'F1' Copy Cal	ets/ac inlets/ acrej ej ect t for He chbasin	Not needed - calct re) C Shoj acce) C Indu C Free C Catchbas C Mon C Three Sen C Sen C Sen C Sen	Added by program oping center (1.2 inlet stry (0.8 inlets/acce) ways (1 inlet/acce) sin Cleaning Frequenc thay e Times per Year Annually pally y Two Years	s/acie) y	
5. Typic 6. Typic Catchba Denokier	al outlet pipe diameter (ft): al outlet pipe Manning's n: C Low density residentia in C Medium density residentia C High density residentia C Strip commercial (1.2 i Catchbasin Cleaning Dates Catchbasin Cleaning Date (nm/dd/yy) 1 2 3 4	1.25 0.013 1 (0.25 inkinitiat (0.5 inkinitiat	ets/ac inlets/ acrej ej ect t for He chbasin ta	Not needed - calct re) C Shoj acce) C Indu C Free C Catchbas C Mon C Sem acc P C Sem C Sem C Evel C Evel	Added by program oping center (1.2 inlet stry (0.8 inlets/acce) ways (1 inlet/acce) in Cleaning Frequenc thay that the frequency is Times per Year is Annually ually y Two Years y Two Years y Two Years	s/acre)	
5. Typic 6. Typical Catchba: Densitier	al outlet pipe diameter (ft): al outlet pipe Manning's n: C Low density residentia Medium density residentia High density residentia Strip commercial (1.2 i Celeaning Dates Celeaning No. Cleaning Date (nm/dd/yy) 1 2 3 4 4 5	1.25 0.013 0 (0.25 inlential (0.5 i al (1 inletz/actor Sele OF Press 'F1' Copy Cat Dat Paste Cat OF	ets/ac inlets/ acre) el ct tor He chbasin ta tchbasin ta	Not needed - calct re) C Shoy acce) C Indu C Free C Catchbas C Mon C Three C Seen C Mon C Seen C Ever C Ever C Ever C Ever C Ever	Added by program oping center (1.2 inlet stry (0.8 inlets/acce) ways (1 inlet/acce) in Cleaning Frequenc thy e Time per Year Annually vally y Two Years y Two Years y Frive Years y Frive Years	r/acre]	
5. Typic 6. Typica Catachba Denoitier	al outlet pipe diameter (II) al outlet pipe Manning's n: C Low density residentin G Medium density residentin C High density residentin C Strip commercial (1.2 i Catchbasin Cleaning Dates Catchbasin Cleaning No. Catchbasin Cleaning No. Cleaning No. Catchbasin Cleaning No. Cleaning No. Cleani	1.25 0.013 0 (0.25 inlential (0.5 i al (1 inlet/ inletz/acro Sele OP Press 'F1' Copy Cat Dat Paste Cat Dat	ets/ac inlets/ acrej el ect tor He chbasin ta tchbasin ta	Not needed - calct re) C Shoy acce) C Indu C Free ↓ C Catchbas ↓ C Mon C Mon C Mon C Sen ↓ C Ever C Ever ↓ C Ever	Added by program oping center (1.2 inlet stry (0.8 inlets/acce) ways (1 inlet/acce) in Cleaning Frequence thay the Trees per Year Annually vally y Two Years y Two Years y Free Years y Free Years	r/acie]	

This is the input file for Catch Basin attributes. In this area we know that there are 20 catch basins, and that the entire area is served by the catch basins (this is because our delineation method is focused on the area contributing runoff to the catch basins). Note that cleaning frequency and pipe attributes are among some of the inputs that can be described here.

	Press 'F1' for Additional Help	
🔲 Use Pipe as a Link, witho	ut Modifying Hydrograph Timing	
1. Pipe Length (ft):	2860	
2. Pipe Diameter (ft):	1.25	
3. Pipe Slope (ft/ft)	0.020	
4. Mannings n	0.013	
Copy Pipe Geometry Data	Paste Pipe Geometry Data	
🦵 Copy all values into ne	xt Pipe when you place it	
Clear		
Cancel	Continue	
Control Practice #: 2 CP Index #	2	29

This is the input describing the pipe attributes once stormwater enters a catch basin. The pipe length is simply the sum of the pipes connecting the system to the outfall, the pipe diameter is averaged based on information we have from system mapping, Manning's number can be derived from the pipe type, and the slope is left at 0.020, which is a default model value.

Pollutant Selection				
	Particulate	Dissolved	Total	
Solids	₹	1		
Phosphorus	5	7	V	
Nitrates		~		
TKN	1	1	V	
COD	9		4	
Fecal Coliform Bact	eria	V		
Chromium				
Copper	1	V	V	
Lead	1	V	v	
Zinc	V	~	V	
E Coli (#/100 ml)		V		
Other 2		1.		
Other 3				
Other 4				
Other 5				
Other 6				
The pollutants listed abo	ove are in the file			
C:\WINSLAMM FILES	EASTCOAST APRIL	05 2014 PPD	<	
Select a pollutant to eva	aluate it.			
	Calcul Al			
	Select Al		ontinue	20
	Clear All	C _		30

This is the file where one can select the pollutants they are interested in. For this simulation all possible pollutants were calculated in the output

itant of Winter Season: 12/0: Nodel Run Start Date: 12/21/4 Date of run: 01-11-2018 T Total Arva Modeled (arres): 1 Years in Model Run: 9.99	2 End 89 Model Run En ime of run: 15:52 16.588	of Winter Seaso d Date: 12/21/9 :52	n: 03/12 9					
		Runoff	Percent Partic	culate Particulate	Percent			
		Volume	Runoff 5	Solids Solids	Particulate			
		(cu ft)	Volume	Conc. Yield	Solids			
			Reduction ((mg/L) (1bs)	Reduction			
Total of all Land Uses without	t Controls:	919591		215.3 12368				
Outfall Total with Controls:		919592	B.00%	136.0 7809	36.82%			
Annualized Total After Outfall	I Controls:	92860		781.7				
Pollutant	Concentration -	Concentration	- Conc.	Pollutant Yiel	d Pollutant Yield	Pol. Yi	ield Percent	
	No Controls	With Controls	Units	Na Controls	With Controls	Units	Reduction	
Particulate Solids	215.3	136.0	ng/L	12360	7809	1bs	36.82 %	
Filterable Solids	425.0	0	mg/L	24570	9	lbs	108.08 %	
Total Solids	643.3	136.0	mg/L	36930	7809	lbs	78.86 %	
Particulate Phosphorus	8.4842	8	ng/L	23.20	0	lbs	100.00 %	
Filterable Phosphorus	0.1684	0	ng/L	9.570	8	155	188.88 %	
Total Phosphorus	0.5726	8	ng/L	32.87	9	155	108.08 %	
Nitrate	0.7297	9	ng/L	41.89	0	lbs	108.08 %	
Particulate TKN	1.394	9	mg/L	80.04	0	lbs	190.00 %	
Filterable TKN	0.5980	0	mg/L	34.33	0	lbs	120.00 X	
Total TKN	1.992	0	mg/L	114.4	e	155	100.00 %	
Particulate Chemical Oxygen D	52.90	0	mg/L	3037	e	lbs	100.00 %	
Filterable Chemical Oxygen De	21,58	0	ng/L	1239	8	105	100.00 %	
Iotal Chemical Oxygen Demand	74.49	0	ng/L	4276	0	lbs	100.00 %	
Fecal Coliform Bacteria	239514	9	#/100 ml	6.233E+13	9	Lount	100.00 5	
Particulate Copper	23.53	0	ug/L	1.351	0	105	100.00 %	
Filterable Copper	19.13	0	ug/L	1.098	0	105	100.00 %	
Total Copper	42.00	0	ug/L	Z.449	0	105	100.00 %	
Particulate Lead	61.39	6	ug/L	3.524		105	100.00 %	
Filterable Lead	5.149	0	ug/L	0.2956	0	Ibs	100.00 %	
Docal Lead	00,34	0	nEVI	3.820	8	105	100.00 %	
Farticulate Linc	67.74	0	ug/L	4.923	0	10%	100.00 A	
Tatal 74as	37.24	0	ug/L	5.200	0	105	100.00 %	
10Ca1 210C	140.0	Q	uB/L	0.210	0	102	198.00 %	

This is the general model output text file. The general attributes are at the top of the page. The model run was simulated for a 10 year period. Note the pollutants modeled, and we can see the pollutant yield at the outfall with the controls (Catch Basins in this case) and without the controls.

This slide and the next 2 are example input forms for other PCSMPs that can be modeled. Included are ponds, grassy swales, and porous pavement. These PCSMPs can be added if they are actually in the field, or added in a computer simulation to achieve a relative understanding of how pollutants, and discharge would be impacted if these controls were included in the system. Again, these are model outputs meant to provide a general understanding of these systems, but field studies are best at documenting the effectiveness and efficiency of any control practice.

ArcSLAMM software/toolbox for use of WinSLAMM in ESRI's ArcGIS